Homogenization of generalized second-order elliptic difference operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Homogenization of Monotone Elliptic Operators

In this paper we construct a numerical homogenization technique for nonlinear elliptic equations. In particular, we are interested in when the elliptic flux depends on the gradient of the solution in a nonlinear fashion which makes the numerical homogenization procedure nontrivial. The convergence of the numerical procedure is presented for the general case using G-convergence theory. To calcul...

متن کامل

On a factorization of second order elliptic operators and applications

We show that given a nonvanishing particular solution of the equation (div p grad+q)u = 0, (1) the corresponding differential operator can be factorized into a product of two first order operators. The factorization allows us to reduce the equation (1) to a first order equation which in a two-dimensional case is the Vekua equation of a special form. Under quite general conditions on the coeffic...

متن کامل

About the mass of certain second order elliptic operators

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3 and let f ∈ C∞(M), such that the operator Pf := ∆g + f is positive. If g is flat near some point p and f vanishes around p, we can define the mass of Pf as the constant term in the expansion of the Green function of Pf at p. In this paper, we establish many results on the mass of such operators. In particular, if f := n−2 4(n−1) sg, ...

متن کامل

Eigenvalue Multiplicities for Second Order Elliptic Operators on Networks Joachim

We present some general bounds for the algebraic and geometric multiplicity of eigenvalues of second order elliptic operators on finite networks under continuity and weighted Kirchhoff flow conditions at the vertices. In particular the algebraic multiplicity of an eigenvalue is shown to be strictly bounded from above by the number of vertices if there are no eigenfunctions vanishing in all node...

متن کامل

On the Generalized Spectrum for Second-order Elliptic Systems

We consider the system of homogeneous Dirichlet boundary value problems (*) Liu = A[an(x)u + a\2(x)v], L2V = ti[ai2{x)u + a.22{x)v] in a smooth bounded domain fi C R", where Li and £2 are formally selfadjoint second-order strongly uniformly elliptic operators. Using linear perturbation theory, continuation methods, and the Courant-Hilbert variational eigenvalue characterization, we give a detai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2018

ISSN: 0022-0396

DOI: 10.1016/j.jde.2018.05.018